INSIGHTS, NEWS & DISCOVERIES
FROM IOACTIVE RESEARCHERS

Tuesday, February 28, 2017

Hacking Robots Before Skynet

By Cesar Cerrudo (@cesarcer) and Lucas Apa (@lucasapa)

Robots are going mainstream in both private and public sectors - on military missions, performing surgery, building skyscrapers, assisting customers at stores, as healthcare attendants, as business assistants, and interacting closely with our families in a myriad of ways. Robots are already showing up in many of these roles today, and in the coming years they will become an ever more prominent part of our home and business lives. But similar to other new technologies, recent IOActive research has found robotic technologies to be highly insecure in a variety of ways that could pose serious threats to the people and organizations they operate in and around.

Wednesday, January 25, 2017

Harmful prefetch on Intel

By Enrique Nissim

We've seen a lot of articles and presentations that show how the prefetch instruction can be used to bypass modern OS kernel implementations of ASLR. Most of the public work however only focuses on getting base addresses of modules with the idea of building a ROP chain or maybe patching some pointer/value of the data section. This post represents an extension of previous work, as it documents the usage of prefetch to discover PTEs on Windows 10. 

Tuesday, December 20, 2016

In Flight Hacking System

By Ruben Santamarta

In my five years with IOActive, I’ve had the opportunity to visit some awesome places, often thousands of kilometers from home. So flying has obviously been an integral part of my routine. You might not think that’s such a big deal, unless like me, you’re afraid of flying. I don't think I can completely get rid of that anxiety; after dozens of flights my hands still sweat during takeoff, but I've learned to live with it, even enjoying it sometimes…and spending some flights hacking stuff.

Tuesday, October 18, 2016

Let's Terminate XML Schema Vulnerabilities

By Fernando Arnaboldi

XML eXternal Entity (XXE) attacks are a common threat to applications using XML schemas, either actively or unknowingly. That is because we continue to use XML schemas that can be abused in multiple ways. Programming languages and libraries use XML schemas to define the expected contents of XML documents, SAML authentications or SOAP messages. XML schemas were intended to constrain document definitions, yet they have introduced multiple attack avenues.

Thursday, September 1, 2016

Five Attributes of an Effective Corporate Red Team

By Daniel Miessler and Ryan O'Horo

After talking recently with colleagues at IOActive as well as some heads of industry-leading red teams, we wanted to share a list of attributes that we believe are key to any effective Red Team.

[ NOTE: For debate about the relevant terminology, we suggest Daniel's post titled The Difference Between Red, Blue, and Purple Teams. ]

Wednesday, August 17, 2016

Multiple Vulnerabilities in BHU WiFi “uRouter”

By Tao Sauvage

A Wonderful (and !Secure) Router from China


The BHU WiFi uRouter, manufactured and sold in China, looks great – and it contains multiple critical vulnerabilities. An unauthenticated attacker could bypass authentication, access sensitive information stored in its system logs, and in the worst case, execute OS commands on the router with root privileges. In addition, the uRouter ships with hidden users, SSH enabled by default and a hardcoded root password…and injects a third-party JavaScript file into all users’ HTTP traffic.

In this blog post, we cover the main security issues found on the router, and describe how to exploit the UART debug pins to extract the firmware and find security vulnerabilities.

Tuesday, March 22, 2016

Inside the IOActive Silicon Lab: Interpreting Images

By Andrew Zonenberg @azonenberg

In the post “Reading CMOS layout,” we discussed understanding CMOS layout in order to reverse-engineer photographs of a circuit to a transistor-level schematic. This was all well and good, but I glossed over an important (and often overlooked) part of the process: using the photos to observe and understand the circuit’s actual geometry.

Optical Microscopy

Let’s start with brightfield optical microscope imagery. (Darkfield microscopy is rarely used for semiconductor work.) Although reading lower metal layers on modern deep-submicron processes does usually require electron microscopy, optical microscopes still have their place in the reverse engineer’s toolbox. They are much easier to set up and run quickly, have a wider field of view at low magnifications, need less sophisticated sample preparation, and provide real-time full-color imagery. An optical microscope can also see through glass insulators, allowing inspection of some underlying structures without needing to deprocess the device.

This can be both a blessing and a curse. If you can see underlying structures in upper-layer images, it can be much easier to align views of different layers. But it can also be much harder to tell what you’re actually looking at! Luckily, another effect comes to the rescue – depth of field.